An Appended Domain Results in an Unusual Architecture for Malaria Parasite Tryptophanyl-tRNA Synthetase

نویسندگان

  • Sameena Khan
  • Ankur Garg
  • Arvind Sharma
  • Noelia Camacho
  • Daria Picchioni
  • Adélaïde Saint-Léger
  • Lluís Ribas de Pouplana
  • Manickam Yogavel
  • Amit Sharma
چکیده

Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum

The malaria parasite Plasmodium falciparum relies on efficient protein translation. An essential component of translation is the tryptophanyl-tRNA synthetase (TrpRS) that charges tRNA(trp). Here we characterise two isoforms of TrpRS in Plasmodium; one eukaryotic type localises to the cytosol and a bacterial type localises to the remnant plastid (apicoplast). We show that the apicoplast TrpRS am...

متن کامل

Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311

For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activa...

متن کامل

Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA

While a number of aminoacyl tRNA synthetase (aaRS):tRNA pairs have been engineered to alter or expand the genetic code, only the Methanococcus jannaschii tyrosyl tRNA synthetase and tRNA have been used extensively in bacteria, limiting the types and numbers of unnatural amino acids that can be utilized at any one time to expand the genetic code. In order to expand the number and type of aaRS/tR...

متن کامل

Depletion of tryptophan is not involved in expression of tryptophanyl-tRNA synthetase mediated by interferon.

Gamma interferon (IFN-gamma) affects tryptophan metabolism by mediating the expression of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase. In the present study, we investigated the role of indoleamine 2,3-dioxygenase-mediated tryptophan depletion in the induction of tryptophanyl-tRNA synthetase by IFN-gamma. The addition of excess tryptophan to the culture medium did not affect the...

متن کامل

Molecular phylogenetic analysis of tryptophanyl-tRNA synthetase of Actinobacillus actinomycetemcomitans.

Aminoacyl-tRNA synthetase family enzymes are of particular interest for creating universal phylogenetic trees and understanding the gene flow as these enzymes perform the basic and analogous biochemical function of protein synthesis in all extant organisms. Among them, tryptophanyl-tRNA synthetase (Trp-RS) plays a foremost role in phylogeny owing to the close relationship with tyrosine-tRNA syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013